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Abstract

Theoretical and computational issues arising in the selection of the optimal sensor configuration for
parameter estimation in structural dynamics are addressed. The information entropy, measuring the
uncertainty in the system parameters, is used as the performance measure of a sensor configuration. A
useful asymptotic approximation for the information entropy, valid for a large number of measured data, is
derived. The asymptotic estimate is then used to rigorously justify that selections of the optimal sensor
configuration can be based solely on a nominal structural model, ignoring the time history details of the
measured data which are not available in the experimental design stage. It is further shown that the lower
and upper bounds of the information entropy are decreasing functions of the number of sensors. Based on
this result, two algorithms are proposed for constructing effective sensor configurations that are superior, in
terms of computational efficiency and accuracy, to the sensor configurations provided by genetic
algorithms. The theoretical developments and the effectiveness of the proposed algorithms are illustrated by
designing the optimal configuration for a 10-degree-of-freedom (d.o.f.) chain-like spring–mass model and a
240-d.o.f. three-dimensional truss structure.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of parametric identification of structural models using measured dynamic data has
received much attention over the years because of its importance in structural model updating,
structural health monitoring and structural control. The estimate of the parameter values involves
uncertainties that are due to limitations of the mathematical models used to represent the
behaviour of the real structure, the presence of measurement error in the data, and insufficient
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excitation and response bandwidth. In particular, the quality of information that can be extracted
from the data for estimating the model parameters depends on the number and location of sensors
in the structure. The objective in an experimental design is to make cost-effective selection of the
optimal number and location of sensors such that the resulting measured data are most
informative about the condition of the structure.
Previous work addressing the issue of optimally locating a given number of sensors in a

structure for modal and/or finite element model parameter estimation has been carried
out by several investigators [1–9]. In particular, information theory based approaches (e.g.
Refs. [2–4,10–13]) have been developed to provide rational solutions to several issues encountered
in the problem of selecting the optimal sensor configuration. In Refs. [2–4] the optimal sensor
configuration is taken as the one that maximizes some norm (determinant or trace) of the
Fisher information matrix (FIM). Refs. [12,13] treat the case of large model uncertainties
expected in model updating. The optimal sensor configuration is chosen as the one that
minimizes the expected Bayesian loss function involving the trace of the inverse of the FIM for
each model.
Papadimitriou et al. [14] introduced the information entropy norm [15] as the measure that best

corresponds to the objective of structural testing which is to minimize the uncertainty in the model
parameter estimates. Specifically, the optimal sensor configuration is selected as the one that
minimizes the information entropy measure since it gives a direct measure of this uncertainty. In
particular, this information entropy-based measure resolved the issue related to the arbitrariness
in selecting an appropriate norm for the Fisher information matrix in previous approaches based
on the Fisher information matrix. It was shown that the information entropy depends on the
determinant of the Fisher information entropy and not the trace.
An important advantage of the information entropy measure is that it allows us to make

comparisons between sensor configurations involving a different number of sensors in each
configuration [14,16]. The information entropy is particularly useful for trading-off cost of
instrumentation with information gained from additional sensors about the state of the structure,
thus making cost-effective decisions regarding optimal instrumentation. Furthermore, it has been
used to design the optimal characteristics of the excitation (e.g., amplitude and frequency content)
useful in the identification of linear and non-linear models [17].
Computational issues arising in the search of the optimal sensor configuration have also been

addressed in the literature. The problem of finding the optimal sensor configuration is formulated
as a discrete minimization problem. An exhaustive search of the optimal sensor configuration is
computationally prohibitive even for structures with relatively small number of degrees of
freedom (d.o.f.). Kammer and Yao (see Ref. [2]) proposed an effective iterative algorithm for
sensor placement in the case of estimating modal parameters. Starting with FIM computed for all
model d.o.f.’s, the sensors resulting in the lowest reduction in the determinant of the FIM are
sequentially removed from the structure until the desired number of sensors is reached. Genetic
algorithms (GA) have also been proposed as an effective alternative [18–20] to the previous
heuristic algorithm which is not guaranteed to give the optimal solution. GAs are well suited for
approximately solving the resulting discrete optimization problem by exploring an infinitesimal
fraction of the total number of possible sensor configurations. Finally, Udwadia [3] demonstrated
that using the trace of the FIM as the performance index is computationally very attractive since
the solution of the underlined discrete optimization problem is straightforward.
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The objective of the present study is twofold. Firstly, a rigorous formulation for the design of
sensor configuration for parameter estimation in dynamic systems is presented based on the
information entropy measure. Specifically, the estimation of the information entropy is re-visited
and a useful asymptotic approximation, valid for large number of data, is derived. This
asymptotic estimate is used to justify that the selection of the optimal sensor configuration can be
based solely on a nominal model such as a finite element model, ignoring the time-history details
of the measured data that are not available in the initial stage of experimental design. Moreover,
analysis shows that the lower and upper bounds of the information entropy for a fixed number of
sensors, corresponding, respectively, to the optimal and worst sensor configuration, is a
decreasing function of the number of sensors. These bounds are important in evaluating the
effectiveness of a sensor configuration and the need for relocating or increasing the number of
sensors in the structure.
Secondly, computational issues related to the estimation of the optimal sensor locations are

addressed. Exploiting the theoretical results derived in this study, two computationally efficient
algorithms are proposed for constructing sensor configurations that correspond to information
entropy values very close to lower or upper bounds of the information entropy. The
computational efficiency and effectiveness of the proposed algorithms are verified by designing
the sensor configuration for a 10 d.o.f. chain-like spring–mass model and a 240 d.o.f. three-
dimensional truss structure both excited by an impulse hammer. In particular, numerical results
indicate that the proposed algorithms provide sensor configurations that can be extremely good
approximations of the optimal sensor configuration. Moreover, it is demonstrated that the
predictions from these heuristic algorithms outperform those provided by GAs.
The presentation in this work is organized as follows. The main results of a Bayesian statistical

framework for structural identification [21], needed in the formulation of the sensor placement
problem, are reviewed in Section 2. The formulation for the information entropy and its
asymptotic approximation is presented in Section 3. The problem of finding the optimal sensor
configuration is formulated in Section 4 as a discrete minimization problem. In Section 5
useful properties of the information entropy related to the dependence of its lower and upper
bounds on the number of sensors are presented. Section 6 deals with computational issues and
algorithms for providing good estimates for the optimal sensor configuration with minimal
computational effort. Applications illustrating theoretical developments and the effectiveness of
the proposed algorithms are given in Section 7. The conclusions of this work are summarized in
Section 8.

2. Statistical framework for structural identification

Consider a parameterized class of structural models (e.g., a class of finite element models or
modal models) chosen to describe the input–output behaviour of a structure. Let hARNy be the
vector of parameters in the model class (e.g., stiffness parameters, modal parameters, etc.). The
Bayesian statistical system identification methodology developed by Beck and Katafygiotis [21] is
adopted to estimate the values of the parameter set h and their associated uncertainties using the
information provided from dynamic test data. For completeness, the main results of the
identification methodology needed in the analysis of the information entropy are briefly reviewed.
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Let D ¼ fyðmÞ; zðmÞ;m ¼ 1;y;Ng be the measured sampled time histories data, where
yðmÞARN0 and zðmÞARNI refer to output and input data, respectively, N0 is the number of
observed d.o.f. of the structural model, NI is the number of input d.o.f,’s, m denotes the time
index at time mDt; Dt is the sampling interval, and N is the number of sampled data. Given the
input time histories zðmÞ; m ¼ 1;y;N; let xðm; hÞARNd ; m ¼ 1;y;N be the sampled response
time histories computed at all Nd model d.o.f.’s from a particular structural model that
corresponds to a specific value h of the model parameters. The measured response and the model
response predictions satisfy the equation

yðmÞ ¼ L0xðm; hÞ þ L0nðm; hÞ; ð1Þ

where nðm; hÞ is the model prediction error that is due to modelling error and measurement noise.
The matrix L0ARN0�Nd is the observation matrix comprised of zeros and ones and maps the model
d.o.f.’s to the measured d.o.f.’s. Introducing, for convenience, the sensor configuration vector
dARNd with elements dj ¼ 1 if the jth model d.o.f. is observed and dj ¼ 0 if the jth model d.o.f. is
not observed, it can be readily shown that LT

0L0 ¼ diagðdÞ:
According to the Bayesian system identification methodology [21], the uncertainties in the

values of the parameters h are quantified by probability density functions (PDF) that are obtained
using the dynamic test data D and the probability model for the prediction error nðm; hÞ:
Specifically, modelling the components of the prediction error nðm; hÞ by independent Gaussian
PDFs with zero mean and variance s2; and applying the Bayes’ theorem, the updating PDF
pðh; s j DÞ of the set of structural model and prediction error parameters ðh;sÞ given the measured
data D takes the form

pðh; s j DÞ ¼ *c
1

ð
ffiffiffiffiffiffi
2p

p
sÞNN0

exp
NN0

2s2
Jðh;DÞ

� �
pðh;sÞ; ð2Þ

where

Jðh;DÞ ¼
1

NN0

XN

m¼1

jjyðmÞ 	 L0xðm; hÞjj2 ð3Þ

represents the measure of fit between the measured and the model response time histories, jj 
 jj is
the usual Euclidian norm, pðh; sÞ ¼ pyðhÞpsðsÞ is the prior distribution for the parameter set ðh; sÞ;
and *c ¼ *cðDÞ is a normalizing constant chosen such that the PDF in Eq. (2) integrates to one.
Using the total probability theorem, the marginal probability distribution pðh j DÞ for the

structural model parameters h is given by pðh j DÞ ¼
R

pðh; s j DÞds: For a non-informative
(uniform) prior distribution psðsÞ the integration with respect to s can be carried out analytically
to yield

pðh j DÞ ¼ c½Jðh;DÞ�	ðNN0	1Þ=2pyðhÞ; ð4Þ

where c  cðDÞ is a normalizing constant ensuring that the PDF in Eq. (4) integrates to one,
that is,

1

cðDÞ
¼

Z
½Jðh;DÞ�	ðNN0	1Þ=2pyðhÞdh: ð5Þ
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For a general prior (initial) distribution psðsÞ; an asymptotic approximation, valid for large
number of data ðN-NÞ; is available [22] in the form (4) with c replaced by c0 ¼ cpsð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jðh;DÞ

p
Þ:

3. Information entropy and its asymptotic approximation

The PDF pðh j DÞ specifies the plausibility of each possible value of the structural model
parameters. It provides a spread of the uncertainty in the parameter values based on the
information contained in the measured data. A unique scalar measure of the uncertainty in the
estimate of the structural parameters h is provided by the information entropy [15] which is
defined by

HðDÞ ¼ Eh½	ln pðh j DÞ� ¼ 	
Z

pðh j DÞln pðh j DÞ dh; ð6Þ

where Eh denotes mathematical expectation with respect to h: Using the form (4) for the updated
PDF pðh j DÞ; the information entropy takes the simplified form

HðDÞ ¼ ln
1

cðDÞ
þ

NN0 	 1

2
Eh½ln Jðh;DÞ� 	 Eh½ln phðhÞ� ð7Þ

and depends only on the available data D and the sensor configuration d:
Next, an asymptotic approximation of the information entropy, valid for large number of data

ðN-NÞ; is introduced which will be proved useful in the experimental stage of designing optimal
sensor configurations. The asymptotic approximation is obtained by observing that the integrals
defining the quantities 1=cðDÞ; Eh½ln Jðh;DÞ� and Eh½ln phðhÞ� in Eq. (7) can be re-written as
Laplace-type integrals and then applying Laplace method of asymptotic expansion [23] to
approximate these integrals. Specifically, it can be shown (Appendix A) that for a large number of
measured data, i.e., as N-N; the following asymptotic results hold for the expressions appearing
in Eq. (7):

1

cðDÞ
Bphð#hÞ

ð2pÞNh=2 #s	ðNN0	1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det hð#h; dÞ

q ; ð8Þ

Eh½ln Jðh;DÞ�Bln #s2 and Eh½ln phðhÞ�Bln phð#hÞ; ð9Þ

where #h  #hðDÞ ¼ arg minh Jðh;DÞ is the optimal value of parameter set h that minimizes
the measure of fit Jðh;DÞ given in Eq. (3), #s2 is the optimal prediction error given by #s2 ¼ Jð#h;DÞ;
and hð#h; dÞ is an ðNh � NhÞ positive definite matrix defined, and asymptotically approximated,
by

hð#h; dÞ ¼ 	½rhrT
h ln½Jðh;DÞ�	ðNN0	1Þ=2�h¼#hB

1

#s2
Qð#h; dÞ as N-N; ð10Þ

while =T
h ¼ ½@=@y1?@=@yp� is the usual gradient vector with respect to the parameters set h: The

matrix Qðd; hÞ appearing in Eq. (10) is a positive definite matrix of the form

Qðd; hÞ ¼
XNd

j¼1

djP
ðjÞðhÞ ð11Þ
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known as the Fisher information matrix [3] and containing the information about the values of
the parameters h based on the data from all measured positions specified in d: The matrix PðjÞðhÞ is
a positive semi-definite matrix given by

PðjÞðhÞ ¼
XN

m¼1

=hxjðm; hÞ =T
h xjðm; hÞ ð12Þ

containing the information about the values of the parameters h based on the data from one
sensor placed at the jth d.o.f.. The matrix PðjÞðhÞ depends only on the response of the model at the
particular d.o.f. j; while it is independent of the sensor configuration vector d:
Substituting Eqs. (8) and (9) into Eq. (7) and simplifying, one finally derives that

HðDÞBHðd; #h; #sÞ ¼ 1
2

Nh½lnð2pÞ þ ln #s2� 	 1
2
ln½detQðd; #hÞ�; ð13Þ

which implies that the information entropy depends on the sensor configuration vector d and the
optimal model parameters #h and #s; while it is independent of the time-history details of the
measured data D: The only dependence of the information entropy on the data comes implicitly
through the optimal values #h  #hðDÞ and #s2 ¼ Jð#h;DÞ: The importance of the asymptotic result in
the experimental design of sensors and actuators will become evident in the next section.

4. Formulation of optimal sensor configuration problem

In experimental design, it is desirable to design the sensor configuration such that the resulting
measured data are most informative about the structural model parameters selected for
estimation. The information entropy, introduced in Eq. (6) as the measure of the uncertainty in
the system parameters, gives the amount of useful information contained in the measured data.
The most informative test data are the ones that give the least uncertainty in the parameter
estimates or, equivalently, the ones that minimize the information entropy. Thus, among all
sensor configurations, the optimal sensor configuration is selected as the one that minimizes the
information entropy. The problem of finding the optimal sensor configuration is formulated as a
discrete optimization problem. The objective function is the information entropy, while the
discrete variables are related to the number and location of sensors.
It should be emphasized that in the initial stage of designing the experiment the test data are not

available. Thus the information entropy defined in Eq. (7) is not specified completely since it
depends explicitly on the details contained in the dataset D: In order to further process the
information entropy, its explicit dependence on the data D has to be removed. This can be
accomplished by considering the limiting case of large number of data ðN-NÞ; often arising in
structural dynamics applications. The resulting asymptotic value of the information entropy,
given in Eq. (13), is completely defined by the optimal value #h of the model parameters and the
optimal prediction error #s2 expected for a set of test data, while the time history details of the
measured data do not enter explicitly in the formulation.
Moreover, since the data are not available, an estimate of the optimal model parameters #h and

#s2 cannot be obtained from analysis. Thus, in order to proceed with the design of the optimal
sensor configuration, this estimate has to be assumed. In practice, useful designs can be obtained
by taking the optimal model parameters #h and #s2 to have some nominal values h0 and #s20 chosen
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by the designer to be representative of the system. In this case, the entropy measure in Eq. (13)
takes the form (for large N)

Hðd; h0; s0Þ ¼ 1
2

Nh½lnð2pÞ þ ln s20� 	
1
2
ln½detQðd; h0Þ� ð14Þ

and depends on the sensor configuration vector d; the parametric class of models chosen to
describe the behaviour of the structure, and the chosen nominal values of the parameters h0 and #s0
of the models.
The aforementioned analysis provides a rigorous justification of the fact that the optimal sensor

design can be based only on a nominal structural model, ignoring the details in the time history of
the measured data which are unavailable in the experimental design stage.

5. Dependence of information entropy on number of sensors

In this section useful results are obtained that show the dependence of the information
entropy and its lower and upper bounds on a number of sensors. These results will be used
in the next section to efficiently construct approximate solutions to optimal sensor location
problem.
Let dðMÞ denote the sensor configuration involving M sensors. Define also the expression dðMÞ þ

dðLÞ to represent the sensor configuration that is formed from the configuration dðMÞ and L

additional sensors placed on the structure as specified by the configuration dðLÞ: Then the
following proposition is true:

Proposition 1. The information entropy for a sensor configuration dðMÞ involving M sensors is higher

than the information entropy for a sensor configuration dðMÞ þ dðLÞ involving L additional sensors.
That is,

HðdðMÞ þ dðLÞ; h; sÞpHðdðMÞ; h; sÞ: ð15Þ

Proof. Using Eq. (14), it suffices to show that the following inequality holds for two sensor
configurations dðMÞ þ dðLÞ and dðMÞ:

det½QðdðMÞ þ dðLÞ; hÞ�Xdet½QðdðMÞ; hÞ�: ð16Þ

Exploiting the special form (11) and (12) of the matrix Qðd; hÞ it can be readily shown that the
matrix Qðd; hÞ is symmetric semi-positive definite since for every non-zero vector yARNh the
quantity

yTQðd; hÞy ¼
XNd

i¼1

diy
TPðiÞðhÞy ¼

XNd

i¼1

di

XN

k¼1

½yT=yxiðk; hÞ�2X0 ð17Þ

is always non-negative. Also, using the special form (11) and (12) it is evident that the matrix
QðdðMÞ þ dðLÞ; hÞ with LX1 admits the representation

QðdðMÞ þ dðLÞ; hÞ ¼ QðdðMÞ; hÞ þ dQðhÞ; LX0; ð18Þ
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where dQðhÞ is also a symmetric semi-positive definite matrix. Substituting Eq. (18) into Eq. (16),
it remains to show the validity of the inequality

det½QðdðMÞ; hÞ þ dQðhÞ�Xdet½QðdðMÞ; hÞ�; LX0: ð19Þ

This statement can be shown using the fact that for two symmetric semi-positive definite matrices
AARNh�Nh and BARNh�Nh the following is true:

lr½Aþ B�Xlr½A�X0; r ¼ 1;y;Ny; ð20Þ

where the symbol lr½A� denotes the r eigenvalue of the matrix A: The last inequality can be derived
from the application of the minimax theorem for eigenvalues of symmetric matrices. Applying
inequality (20) for A ¼ QðdðMÞ; hÞ and, using the fact that detA ¼

QNh
r¼1 lr½A� for any matrix A;

inequality (19) is readily derived. &

Proposition 1 implies that the information entropy reduces as additional sensors are placed in a
structure. Given the interpretation of the information entropy as a measure of the uncertainty in
the parameter estimates, this should be intuitively expected since adding one or more sensors in
the structure will have the effect of providing more information about the system parameters and
thus reducing the uncertainty in the parameter estimates.
Let dðMÞ

opt and dðMÞ
worst denote the optimal and worst sensor configurations for M sensors,

respectively. Let also H
ðMÞ
min ¼ HðdðMÞ

opt ; h;sÞ and H ðMÞ
max ¼ HðdðMÞ

worst; h; sÞ be the minimum and
maximum information entropy values corresponding to the optimal and worst sensor
configurations dðMÞ

opt and dðMÞ
worst; respectively. As a direct consequence of Proposition 1, the

following proposition is true.

Proposition 2. The minimum and maximum information entropies for M sensors are decreasing
functions of the number of sensors, M: Mathematically, this could be stated as

H
ðMþLÞ
min pH

ðMÞ
min ð21Þ

and

H ðMþLÞ
max pH ðMÞ

max: ð22Þ

This reduction of the information entropy as a function of the number of sensors is expected
since increasing the number of sensors has an effect of extracting more information from the data.
This trend was observed for the minimum information entropy in the numerical results presented
in Ref. [14]. Next, a proof of inequalities (21) and (22) is provided.
Specifically, replacing dðMÞ in Eq. (15) by dðMÞ

opt and using the fact that H
ðMÞ
min ¼ HðdðMÞ

opt ; h; sÞ;
Eq. (15) takes the form

HðdðMÞ
opt þ dðLÞ; h;sÞpHðdðMÞ

opt ; h; sÞ  H
ðMÞ
min : ð23Þ

Also, noting that H
ðMþLÞ
min pHðdðMþLÞ; h; sÞ for every sensor configuration dðMþLÞ involving M þ L

sensors and choosing dðMþLÞ ¼ dðMÞ
opt þ dðLÞ; it follows that H

ðMþLÞ
min pHðdðMÞ

opt þ dðLÞ; h;sÞ: Statement
Eq. (21) follows directly from the last relation and Eq. (23).
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The proof of Eq. (22) follows similar arguments to those used for showing the validity of
Eq. (21). Specifically, replacing dðMÞ þ dðLÞ in Eq. (15) by dðMþLÞ

worst and using the fact that H ðMþLÞ
max 

HðdðMþLÞ
worst ; h;sÞ; Eq. (15) takes the form

H ðMþLÞ
max  HðdðMþLÞ

worst ; h;sÞpHðdðMÞ; h; sÞ: ð24Þ

Expression (22) follows directly from the fact that HðdðMÞ; h; sÞpH ðMÞ
max for every sensor

configuration dðMÞ involving M sensors.

6. Computational issues

For a structural model with Nd d.o.f.’s, the number of all distinct sensor configurations
involving N0 sensors is

Ns ¼
Nd !

N0!ðNd 	 N0Þ!
ð25Þ

which for most cases of practical interest can be an extremely large number. Therefore, an
exhaustive search over all sensor configurations for the computation of the optimal sensor
configuration is extremely time consuming and in most cases prohibitive even for models with a
relatively small number of d.o.f.’s. Alternative approximate techniques must be used to solve the
discrete optimization and obtain good estimates of sensor configurations that correspond to
information entropy values close to the minimum information entropy. Two such techniques are
next presented and compared. The first is based on genetic algorithms which are most suitable for
solving general discrete optimization problems. The second technique is based on a sequential
sensor placement algorithm that exploits the theoretical results stated in Proposition 2.

6.1. Sensor placement using genetic algorithm (GA)

Genetic algorithms are most suitable for solving the resulting discrete optimization problem
and providing near optimal solutions. For an introduction to the GA theory the reader is referred
to standard textbooks [24,25]. Herein, the optimization is carried out using a simple GA [24] that
for Nd d.o.f.’s and N0 sensors proceeds as follows. The number of variables to be optimized equals
the number of sensors to be placed on the structure. The range of values of each variable is
determined by the number of d.o.f. of the model. Specifically, each variable takes integer values
ranging from 1 to Nd : Thus a string of nbit ¼ ceilðlog Nd=log 2Þ bits is used for binary
representation of the possible values of each variable. The size of the string is selected to cover the
whole range of variation of each variable. For N0 sensors, the number of bits forming the
chromosome in GAs is nbitN0: Thus a possible solution is represented by a string of length nbitN0

bits. A population of possible solutions of a fixed size is initialized randomly in a bitwise fashion.
The genetic operators of mutation and the crossover are used to generate the population in the
next generation. The probability of mutation pm and the probability of crossover pc are kept fixed.
The fitness function used for computing the optimal sensor configuration is taken as the value of
the information entropy defined in Eq. (14).
It should be noted that for structural models with number of d.o.f.’s Nd less than 2nbit ; where nbit

is the number of bits per string, the above representation may give strings with corresponding
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values greater than the total number of d.o.f.’s of the model. The selection of such strings in the
next generation is avoided by assigning them a very large fitness value. Another issue encountered
in the applications of GAs is that the binary representation of the variables may yield sensor
configurations involving less than N0 distinct positions. The fitness of such strings is evaluated
using only the number of sensors that correspond to distinct positions in the structure, thus
neglecting the common sensor positions. Such configuration will involve less than N0 sensors but
they usually have very good fitness values and they should be left in the population. Invalidating
these strings by assigning a very large fitness value may decelerate the convergence of the GA.

6.2. Sequential sensor placement (SSP) algorithms

A more systematic and computationally very efficient approach for obtaining a good sensor
configuration for a fixed number of N0 sensors is to use a sequential sensor placement algorithm
as follows. The positions of N0 sensors are computed sequentially by placing one sensor at a time
in the structure at a position that results in the highest reduction in information entropy.
Specifically, the position of the first sensor is chosen as the one that gives the highest reduction in
the information entropy for one sensor. Given the optimal position of the first sensor, the position
of the second sensor is chosen as the one that gives the highest reduction in the information
entropy computed for two sensors with the position of the first sensor fixed at the optimal one
already computed in the first step. Continuing in a similar fashion, given the positions of ði 	 1Þ
sensors in the structure computed in the previous ði 	 1Þ steps, the position of the next ith sensor is
obtained as the one that gives the highest reduction in the information entropy for i sensors with
the positions of the first ði 	 1Þ sensors fixed at the optimal ones already obtained in the previous
ði 	 1Þ steps. This procedure is continued for up to N0 sensors.
This construction of the sensor configuration exploits the theoretical results stated in

Proposition 2, that is, the lower bound of the information entropy is a decreasing function of
the number of sensors. The sequential sensor placement algorithm will give the optimal sensor
configuration only in the case for which the optimal sensor positions for i sensors is a subset of the
optimal sensor positions for ði þ 1Þ sensors for all i from one to N0: However, the last argument
does not hold in general and the sensor configuration computed by the sequential sensor
placement algorithms cannot be guaranteed to be the optimal one. The sensor configurations
estimated from the sequential sensor placement algorithm provide information entropy values
that are upper bounds of the minimum information entropy. Numerical applications presented
next in the application section show that these bounds in most cases examined coincide with, or
are very close to, the exact minimum information entropy. Compared to the GA algorithm, the
SSP algorithms are preferred since they are found to maintain higher levels of accuracy with less
computational effort than that involved in GAs.
For the sake of reference, the aforementioned algorithm is termed the forward sequential sensor

placement (FSSP) algorithm. The SSP algorithm can also be used in an inverse order, starting
with Nd sensors placed at all d.o.f.’s of the structure and removing successively one sensor at a
time from the position that results in the smallest increase in the information entropy. This
algorithm is termed as the backward sequential sensor placement (BSSP).
The successive placement of each sensor in the structure using the SSP algorithm requires the

optimization of the information entropy with respect to one sensor location. The solution is easily
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provided using an exhaustive search of the parameter space. Using the forward SSP algorithm, the
total number of function evaluations for optimally placing the ith sensor given that ði 	 1Þ sensors
have already been placed in the structure is equal to ðNd 	 i þ 1Þ; where Nd is the total number of
d.o.f.’s. Thus, the total number of function evaluations required for designing the ‘‘optimal’’
sensor configuration for N0 sensors is

PN0

i¼1 ðNd 	 i þ 1ÞpN0Nd : The upper bound N0Nd is a good
estimate for small number of sensors N0 relative to Nd : Moreover, the design of sensor
configurations from one up to Nd sensors requires a total of NdðNd þ 1Þ=2 function evaluations
which is extremely small number compared to the number Ns; given in Eq. (25). Similarly, the
total number of function evaluations required by the backward SSP algorithm is

PNd	N0þ1
i¼1 ðNd 	

i þ 1ÞpNdðNd þ 1Þ=2; where the upper bound NdðNd þ 1Þ=2 is a good estimate for small number
of sensors N0 relative to Nd : For a small number of sensors relative to the number of d.o.f.’s,
usually the case in structural dynamics applications, the BSSP algorithm requires Nd=ð2N0Þ times
more computational effort than the FSSP algorithm. Thus, from the computational point of view,
the FSSP algorithm should be the preferred algorithm in applications.

6.3. Upper bound of information entropy

The upper bound of the information entropy corresponding to the worst sensor configuration is
also useful since when it is compared with the minimum information entropy for the same number
of sensors it gives a measure of the reduction that can be achieved by optimizing the sensor
configuration. The maximum information entropy and the corresponding worst sensor
configuration can be obtained from the aforementioned algorithms by maximizing instead of
minimizing the information entropy.
In fact, the GA software used for finding the optimal sensor configuration can also be used with

slight modifications to find the worst sensor configuration. One major difference though is that
the application of GAs will tend to converge to an invalid solution which involve less than N0

sensors. To avoid the convergence to such solutions, the fitness of configurations involving less
than N0 sensors is given very small values. Due to the several invalid configurations encountered
in the search for the worst configuration, the rate of convergence of GAs when used to find the
worst sensor configuration is slower than the one corresponding to the optimal sensor
configuration.
Using the FSSP algorithm an approximation to the worst sensor configuration is obtained by

placing successively one sensor at a time in the position that results in the smallest decrease in
information entropy. Similarly, using the BSSP algorithm, an approximation to the worst sensor
configuration is obtained by removing successively one sensor at a time from the position that
results in the highest increase in the information entropy value.

7. Applications

The objective of the applications is to explore, illustrate and compare the effectiveness, in terms
of accuracy and computational efficiency, of the three methods: the exhaustive search method
(exact), the two sequential sensor placement methods and the method based on GAs. The
exhaustive search method, which provides exact results against which comparisons should be
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made, is computationally prohibitive for more than a few number of model d.o.f.’s. Thus, in order
to investigate the accuracy of the proposed approximate SSP methods, the methodology is first
applied to a 10 d.o.f. model for which exact results for comparison are readily obtained from the
exhaustive search method. Then the two approximate SPP methods and the approximate GA
method are compared for their computational efficiency and accuracy using a truss model that
involves a considerably higher number of 240 d.o.f.’s. In this case, however, the exact results from
the exhaustive search method are not available even for as few as four sensors due to the
prohibitively large number of computations required.

7.1. Ten-d.o.f. chain-like spring–mass model

In order to facilitate comparisons between the exact exhaustive search method and the two SSP
algorithms, the methodology is first applied to a 10 d.o.f. chain-like spring mass model, shown in
Fig. 1. The structure is parameterized using 10 parameters, with the ith parameter modelling the
ith spring stiffness ki: The masses are considered to be same for all links in the chain. The nominal
structure corresponds to uniform stiffness distribution along the chain. The nominal values of the
spring stiffnesses and masses, respectively, are chosen such that the fundamental frequency of the
nominal structure is approximately 0:9 Hz: Classical normal modes are assumed with the modal
damping fixed at 5% for all modes. The structure is subjected to an impulse excitation of unit
magnitude applied on the tenth mass of the model. This impulse excitation can be viewed as
simulating the excitation from impact hammer tests. The responses of the nominal model at all
model d.o.f., needed in the calculation of the information entropy (see Eqs. (11), (12) and (14)),
are readily obtained using modal analysis and deriving analytically the modal responses from the
modal equations of motion of the structure.
The information entropy values hðd; h0;s0Þ for a sensor configuration vector d are used to

construct the information entropy index defined by IEIðdÞ ¼ exp½ðhðd; h0;s0Þ 	 hðdref ; h0;s0Þ=NyÞ�;
where hðdref ; h0;s0Þ is the reference information entropy computed for a referenced sensor
configuration dref : The IEIðdÞ is a measure of the uncertainty in the parameter estimates relative to
the uncertainty obtained for a referenced sensor configuration. The referenced sensor
configuration is selected as the one involving sensors at all d.o.f.’s so that the IEIðdÞ values,
when compared to one, give the effectiveness of the sensor configuration d and the maximum
improvement that can be achieved by sensor re-configuration strategies.
The minimum and maximum information entropy index values IEIðdÞ as a function of the

sensors computed by the exhaustive search method (exact method) and the forward and backward
SSP methods are shown in Figs. 2(a), 3(a) and 4(a) for 10, 5 and 2 observable modes, respectively.
The corresponding condition numbers for the information matrix Qðd; hÞ defined in Eq. (11) are
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also computed using the exhaustive search method and shown in Figs. 2(b), 3(b) and 4(b). It
should be noted that the dimension of the information matrix Qðd; hÞ is 10.
The information entropy estimates predicted by the forward and backward SSP methods are, in

most cases, extremely good approximations of the minimum information entropy. Comparing the
predictions from the FSSP and the BSSP methods, the results may slightly differ depending on the
sensor case considered. This difference is more pronounced in the case of maximum information
entropy predictions. An effective use of the FSSP and BSSP algorithms is to combine their
predictions as follows. Two predictions of the optimal (respectively worst) sensor configuration,
one for each method, are first constructed. Then among these two predictions the one that
corresponds to the minimum (respectively maximum) information entropy value is selected as the
best one.
It should be mentioned that for a small number of sensors and/or a small number of observable

modes, the 10-parameter model is unidentifiable or almost unidentifiable. This gives rise to non-
unique solutions encountered in inverse problems for parameter identification [26–29]. The
unidentifiability is reflected in the very large values of the condition number of the matrix Qðd; hÞ;
defined in Eq. (11). Specifically, the very large values, of the order of 1017; shown in Fig. 4(b)
suggest that the model parameters are unidentifiable for the case of 2 observable modes and
sensor configurations involving up to 3 sensor. For sensor configurations involving 4 to 6 sensors,
the identifiability depends on the sensor locations since the optimal sensor configuration
corresponds to a well-conditioned matrix Qðd; hÞ; while the worst sensor configuration
corresponds to an ill-conditioned matrix. This case clearly reveals the importance of optimizing
the sensor configuration for 4–6 sensors and 2 observable modes in order to avoid configurations
that do not provide enough information for obtaining unique solutions to the parameter
estimation problem. Finally, it should be observed that the accuracy of the FSSP method
deteriorates for the ill-conditioned cases shown in Figs. 3 and 4.
The optimal sensor locations and the corresponding information entropy index values for 1–10

sensors and 10 observable modes are compared in Table 1 for the exact method and the two SSP
methods. It is seen that both the SSP algorithms correctly predict the optimal sensor locations for
5–10 sensors. The FSSP algorithm correctly predicts the optimal sensor location for 1 and 4
sensors, while the BSSP algorithm correctly predicts the optimal sensor location for 3 sensors. The
combined FSSP and BSSP predictions, shown in boldface in Table 1, coincide in almost all cases
with the exact one.

7.2. Three-dimensional 240-d.o.f. truss structure

The methodology is next applied to a 240-d.o.f. 20-bay three-dimensional truss structure shown
schematically in Fig. 5. For illustration purposes, it is assumed that all vertical and horizontal
members of the nominal truss have the same sizes and that the mass of the structure is uniformly
lumped at the nodes of the truss. Classical normal modes are assumed with the modal damping
fixed at 5% for all modes. The structure is subjected to an impulse excitation of unit magnitude at
the top of the truss towards the horizontal direction, shown in Fig. 5.
An eight-parameter model is considered with the eight parameters modelling the stiffness of

the eight diagonals at the first (lower) and second bay of the truss shown with broken lines in
Fig. 5(b). The parameterization represents the case for which the truss is to be monitored for local

ARTICLE IN PRESS

C. Papadimitriou / Journal of Sound and Vibration 278 (2004) 923–947 935



ARTICLE IN PRESS

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

Number of Sensors

In
fo

rm
at

io
n 

E
nt

ro
py

 In
de

x

Exact (Min)
BSSP (Min) 
FSSP (Min) 
Exact (Max)
BSSP (Max) 
FSSP (Max) 

(a)

1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

Number of Sensors

C
on

di
tio

n 
N

um
be

r

Exact (Min)
Exact (Max)

(b)

Fig. 2. (a) Minimum and maximum information entropy index values IEIðdÞ for 10 observable modes; (b) Condition

number of matrix Qðd; hÞ:

C. Papadimitriou / Journal of Sound and Vibration 278 (2004) 923–947936



ARTICLE IN PRESS

1 2 3 4 5 6 7 8 9 10
10

0

101

102

103

104

105

Number of Sensors

In
fo

rm
at

io
n 

E
nt

ro
py

 In
de

x

Exact (Min)
BSSP (Min) 
FSSP (Min) 
Exact (Max)
BSSP (Max) 
FSSP (Max) 

(a)

1 2 3 4 5 6 7 8 9 10
10

0

10
5

10
10

10
15

10
20

Number of Sensors

C
on

di
tio

n 
N

um
be

r

Exact (Min)
Exact (Max)

(b)

Fig. 3. (a) Minimum and maximum information entropy index values IEIðdÞ for 5 observable modes; (b) Condition

number of matrix Qðd; hÞ:

C. Papadimitriou / Journal of Sound and Vibration 278 (2004) 923–947 937



ARTICLE IN PRESS

1 2 3 4 5 6 7 8 9 10
102

104

106

108

1010

1012

Number of Sensors

In
fo

rm
at

io
n 

E
nt

ro
py

 In
de

x

Exact (Min)
BSSP (Min) 
FSSP (Min) 
Exact (Max)
BSSP (Max) 
FSSP (Max) 

(a) 

(b) 
1 2 3 4 5 6 7 8 9 10

100

105

1010

1015

1020

Number of Sensors

C
on

di
tio

n 
N

um
be

r

Exact (Min)
Exact (Max)

Fig. 4. (a) Minimum and maximum information entropy index values IEIðdÞ for 2 observable modes; (b) Condition

number of matrix Qðd; hÞ:

C. Papadimitriou / Journal of Sound and Vibration 278 (2004) 923–947938



damage at the lowest two bays, caused by environmental effects or severe loads. The dimension of
the information matrix Qðd; hÞ is 8 in this case.
The objective is to explore and compare the effectiveness, in terms of computational efficiency

and accuracy, of the approximate methods: the two SSP methods and the method based on GAs.
The number of sensor configurations required to be searched for optimality using the exhaustive
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Table 1

Comparison between the exhaustive search (exact), FSSP and BSSP predictions of optimal sensor locations and

corresponding information entropy index values for 1–10 sensors
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search method is given in Table 2 as a function of the number of sensors in a configuration. The
number of function evaluations required to construct the optimal sensor configuration for 2, 4, 8,
12, 16, 20, 25, 30 and 50 sensors using the FSSP and BSSP methods are also shown in the table. It
is clear that an exhaustive search is computationally very expensive even for the case of a few
sensors, while it is prohibitive for more than 4 sensors. In contrast, the SSP algorithms are
computationally effective alternatives for constructing approximations to the optimal or worst
sensor configurations. Comparing the computational effort of the FSSP and BSSP methods, the
FSSP method is preferred since it requires one to two orders of magnitude less effort than the
BSSP method. More specifically, the results in Table 2 suggests that the computational effort in
FSSP method is 80 and 2.4 times less than that in BSSP method for 2 and 50 sensors, respectively.
The accuracy of the sensor configurations provided by the SSP algorithms is evaluated by

comparing the corresponding information entropy values with those computed by GAs. For this,
optimal and worst sensor configurations are computed for 1 to 240 sensors using the SSP
algorithm and for 2, 4, 8, 12, 16, 20, 25, 30 and 50 sensors using GAs. In all runs the GA results
are computed using the following choices: probability of mutation pm ¼ 0:01; probability of
crossover pc ¼ 0:9; population size 20 and number of generation 2000. This choice corresponds to
40,000 function evaluations and should be compared to the function evaluations given in Table 2
for the SSP methods. Results from the exhaustive search method (exact method) have also been
obtained for a very limited number of 2 sensors.
Figs. 6 and 7 show the variation of the corresponding predictions of the lower and upper

bounds of the information entropy index as a function of the number of sensors placed at their
optimal and worst locations, respectively. In order to study the effect of observable modes on the
optimal sensor configuration, results in Figs. 6 and 7 correspond to 20 and 10 observable modes,
respectively. For comparison purposes the reference value hðdref ; h0;s0Þ used in the definition of
the information entropy index is chosen to correspond to the optimal sensor configuration case
for which all two hundred and forty (240) d.o.f.’s of the structure are instrumented with sensors,
and 20 modes of the structure are observable.
The BSSP and FSSP methods give approximately the same predictions for the minimum

information entropy for almost all cases considered. The performance of the two methods for
predicting the maximum information entropy values depends on the number of sensors and
observable modes. The combined results provided by the SSP methods are in all cases better than
the ones provided by the GAs. Considering also the higher computation effort involved in the GA
estimates, it becomes clear that the SSP methods are considerably more effective than the GA
method. In addition, the application of the SSP methods for 1 and Nd sensors provide predictions
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Table 2

Number of function evaluations using the exhaustive search (exact) and the SSP methods

Method Number of sensors

2 4 8 12 16 20 25 30 50

Exact 2:8� 104 1:3� 108 2:4� 1014 5:7� 1019 3:4� 1024 7:3� 1028 5:6� 1033 1:4� 1038 1:3� 1052

FSSP 479 954 1892 2814 3720 4610 5700 6765 10775

BSSP 28919 28914 28892 28854 28800 28730 28620 28485 27695
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of the upper and lower bounds of the information entropy for sensor configurations involving any
number of sensors ranging from 1 to Nd ; while GAs provide predictions for an optimal
configuration involving a fixed number of sensors only. Finally, comparing the predictions of the
SSP methods with the exact ones available for the case of one and two sensors, it is observed that
the FSSP method gives better predictions of the optimal and worst sensor configurations than the
predictions from the BSSP method.
To further illustrate the rate of convergence and effectiveness of GAs, the optimal and worst

information entropy values computed for 20 sensors using GAs is plotted as a function of the
number of generations and for various population sizes in Fig. 8. It should be noted that the
curves identified as ‘‘GAmin’’ and ‘‘GAmax’’ in these figures correspond to the minimum and
maximum values of the information entropy obtained from GAs using five independent runs. For
comparison purposes, the information entropy values predicted by the FSSP and BSSP
algorithms are also shown in these figures at generation number 1500. In order to make direct
comparisons of computational effort between methods, the SSP predictions are also marked at
intermediate generation numbers corresponding to function evaluations for the GAs approxi-
mately equal to the function evaluations required from either FSSP or BSSP method. The
predictions from the two SSP methods are very close. Thus, the FSSP method is more effective
since it requires one order of magnitude less computational effort than the BSSP method. It is also
clearly shown in these figures that for the same computational effort, the SSP methods always give
superior estimates than the GA estimate. It is noted, however, that as the number of generations
increases, the GA estimate converges closer to the combined estimate provided by the SSP
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algorithms. In all cases examined, the predictions from the SSP algorithms outperform those
obtained from the GAs for a very large number of generations.
It is worth observing in Figs. 6, 7 and 2–4 that the minimum or maximum information entropy

is a decreasing function of the number of sensors placed in the structure at the optimal or worst
positions, respectively. This is consistent with the theoretical result stated in Proposition 2. For
the truss structure in Figs. 6 and 7, a drastic reduction of the minimum information entropy is
observed for the first 10–20 sensors, while the rate of reduction for the next sensors is slower.
Another observation that is worth mentioning is related to the difference between the upper and

lower bounds of the information entropy index computed at the optimal and worst sensor
locations. This difference is a direct measure of the maximum improvement that can be achieved
by optimizing the sensor locations in the structure. This difference is seen in Figs. 6, 7 and 2–4 to
decrease monotonically with increasing the number of sensors, which suggests that the fewer the
number of sensors, the more effective an optimal sensor placement technique will be.
Also, one can conclude that a given number of sensors placed at their optimal locations may

yield much better information than a higher number of sensors arbitrarily placed in the structure.
For example, it is seen in Fig. 6 that 8 and 20 sensors placed at their optimal locations may yield
better information than 120 and 160 sensors, respectively, arbitrarily placed in the structure. Thus
optimizing the sensors in the structure is highly desirable and can result in significant reduction in
the cost of the instrumentation.
The optimal sensor locations computed using the BSSP method are presented in Fig. 9 for up to

16 sensors and the case of 20 observable modes. The results from the FSSP method, although they
can be obtained with approximately one order of magnitude less effort, are less accurate than the
BSSP results for 4–6 sensors, while they coincide with the BSSP results for 7–16 sensors. For the
optimal sensor configuration, the first four sensors (sensors 1–4) are placed at the first bay at
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d.o.f.’s pointing along the two horizontal directions, while the next four sensors (sensors 5–8) are
placed at the top bay at d.o.f.’s pointing along the horizontal direction. The next four sensors
(sensors 9–12) are placed at the first bay, while the next four sensors (sensors 13–16) are placed at
the top bay at d.o.f.’s pointing along the two horizontal directions. Finally, the worst sensor
configuration computed for up to 80 sensors using the SSP methods is the one for which all
sensors are monitoring d.o.f.’s pointing along the vertical direction.

8. Conclusions

A rigorous formulation of the optimal sensor placement problem for structural identification
was presented based on the information entropy measure of parameter uncertainty. An
asymptotic estimate, valid for large number of data, was derived and used to justify that the
sensor placement design can be based solely on a nominal model, ignoring the details in the
measured data. The analysis also showed that the lower and upper bounds of the information
entropy values for a fixed number of sensors, corresponding respectively to the optimal and worst
sensor configuration, is a decreasing function of the number of sensors.
Based on the analysis, two heuristic sensor placement algorithms, the BSSP and FSSP, were

proposed for constructing predictions of the optimal and worst sensor configurations. The
computations involved in the SSP algorithm are an infinitesimal fraction of the ones involved in
the exhaustive search method and can be done in realistic time, independently of the number of
sensors and the number of model d.o.f.’s. Genetic algorithms, well-suited for solving the resulting
discrete optimization problem, were also used to provide an estimate of the optimal sensor
location for a fixed number of sensors. The effectiveness of the proposed algorithms was evaluated
based on two example applications involving stiffness-related parameter identification in
structural dynamics. It was found that for essentially the same accuracy, the GA algorithm
requires significantly more computational effort than the heuristic SSP algorithms. In almost all
cases considered, the estimate from the GA algorithm did not improve the estimate provided by
the SSP algorithms. Thus, although the SSP algorithms are not guaranteed to give the optimal
solution, they were found to be effective and computationally attractive alternatives to the GAs.
In particular, SSP algorithms provide with minimal computational effort the variation of the
lower and upper bounds of the information entropy as a function of the number of sensors. Such
bounds are useful in evaluating the effectiveness of a sensor configuration as well as in guiding the
cost-effective selection of the number of sensors, trading-off information provided from extra
sensors with cost of instrumentation.
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Appendix A. Proof of asymptotic approximations (8) and (9)

A well-known asymptotic approximation for the Laplace type integral [23] is used in the proof
of asymptotic estimates (8) and (9). Specifically, let f ðhÞ be a twice differentiable function of h; gðhÞ
be a continuous function of h and #h be the value of h that globally maximizes f ðhÞ: Then the
following asymptotic approximation of the Laplace-type integral holds:Z

gðhÞ exp½b2f ðhÞ�dhBð2pÞNh
gð#hÞ exp½b2f ð#hÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det hð#hÞ
q as b-N; ðA:1Þ

where hðhÞ is the Hessian of the function b2f ðhÞ:
The asymptotic approximation (8) is shown first. For this, the integral in Eq. (5) is rewritten in

the form

1

cðDÞ
¼

Z
phðhÞ exp½	ðNN0 	 1Þ=2 ln Jðh;DÞ�dh ðA:2Þ

which is of the type of Eq. (A.1) with gðhÞ ¼ phðhÞ; f ðhÞ ¼ 	ln Jðh;DÞ and b2 ¼ ðNN0 	 1Þ=2:
Therefore, as N-N; i.e., for large number of data, the asymptotic approximation (A.1) can be
applied for integral (A.2) to yield

1

cðDÞ
Bð2pÞNh=2 phð#hÞ exp½	ðNN0 	 1Þ=2 ln Jð#h;DÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det hð#h;DÞ
q ; ðA:3Þ

where hðh;DÞ is the Hessian of the function b2f ðhÞ ¼ 	ðNN0 	 1Þ=2 ln Jð#h;DÞ with the ði; lÞ
element given by

hilðh;DÞ ¼ 	ðNN0 	 1Þ=2
@2½ln Jðh;DÞ�

@yi@yl

: ðA:4Þ

Substituting the form of Jðh;DÞ from Eq. (3), carrying out the second order differentiation,
simplifying, using the relation LT

0L0 ¼ diagðdÞ; and evaluating the resulting expression at h ¼ #h;
one readily obtains that

hilð#h;DÞ ¼
ðNN0 	 1Þ

Jð#h;DÞ
	

2

Jð#h;DÞ

@Jð#h;DÞ
@yl

AN þ BN þ
1

NN0

XN

k¼1

XNd

j¼1

dj

@xjðk; #hÞ
@yi

@xjðk; #hÞ
@yl

" #
; ðA:5Þ

where

AN ¼
1

NN0

XN

k¼1

XNd

j¼1

djnjðk; #hÞ
@xjðk; #hÞ

@yi

; BN ¼
1

NN0

XN

k¼1

XNd

j¼1

djnjðk; #hÞ
@2xjðk; #hÞ
@yi@yl

: ðA:6Þ

The values of the quantities njðk; #hÞ; defined in Eq. (1), are samples of independent, identically
distributed Gaussian random variables. Thus, using the law of large numbers, as N-N the
coefficients AN-0 and BN-0: Therefore, neglecting their contribution in Eq. (A.5) and using the
fact that #s2 ¼ Jð#h;DÞ; the elements hilð#h;DÞ of the Hessian matrix simplify to

hilð#h;DÞB
1

#s2
Qilð#h; dÞ ¼

1

#s2
XN

k¼1

XNd

j¼1

dj

@xjðk; #hÞ
@yi

@xjðk; #hÞ
@yl

: ðA:7Þ
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Finally, the matrix Qðh; dÞ formed by the elements Qilðh; dÞ takes the compact form given in
Eqs. (10)–(12). Also, substituting Eq. (A.7) into Eq. (A.3) and using the fact that #s2 ¼ Jð#h;DÞ; the
asymptotic estimate (A.3) takes the final form given in Eq. (8).
The asymptotic approximations (9) are shown next. Using Eq. (4), the integral in Eh½ln Jðh;DÞ�

can be written in the form

Eh½ln Jðh;DÞ� ¼ c

Z
phðhÞ ln½Jðh;DÞ� exp½	ðNN0 	 1Þ=2 ln Jðh;DÞ�dh; ðA:8Þ

Applying the asymptotic result (A.1) with gðhÞ ¼ phðhÞ ln Jðh;DÞ; f ðhÞ ¼ 	ln Jðh;DÞ and b2 ¼
ðNN0 	 1Þ=2-N as N-N; the integral in Eq. (A.8) is asymptotically approximated by

Eh½ln Jðh;DÞ�Bcð2pÞNh=2phð#hÞ ln Jð#h;DÞ
exp½	ðNN0 	 1Þ=2 ln Jð#h;DÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det hð#h;DÞ
q : ðA:9Þ

Substituting from Eq. (A.3) the asymptotic result derived for 1=cðDÞ; the expression in Eq. (A.9)
simplifies to

Eh½ln Jðh;DÞ�Bln½Jð#h;DÞ� ðA:10Þ

which, using the relation #s2 ¼ Jð#h;DÞ; is exactly the same as the one given in Eq. (9).
Following a similar analysis, the second asymptotic approximation in Eq. (9) for the term

Eh½ln phðhÞ� is readily obtained.
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